The Asia Pacific Journal of Energy and Environment (APJEE) is an international blind peer-reviewed journal that publishes theoretical, experimental and applied outcomes in the science, engineering and policy aspects of sustainable energy and environment. The journal aims to provide a multidisciplinary and international forum for the broadening of the latest high-quality research fellows, particularly those related to or with implications for the Asia Pacific region.

APJEE is joint quarterly to make available an enduring documentation of achievements aligned to energy and the environment. The scope of the journal includes:

- Energy – Renewable energy, solar thermal applications, bioenergy, wind energy, energy management and conservation in industrial processes and buildings, energy planning and policy, energy standards, energy consumption development, utilization, heat exchanges, equipment, controls, and other energy-related topics.
- Environment – Bioenergy processes and pollution, radiation protection, greenhouse gas emissions, emissions and freshwater thermal pollution, lands and radioactive waste, greenhouse gases, environmental impact, organic and inorganic environment associated topics.

“"I am not the best but I am trying my best.”"
ABC Journals

- Online Submission
- Peer Reviewed
- Open Access
- Online Archives
- Paperless Review
- Prompt Feedback
- Global Circulation
- International Authorship
Determination of energy gain time dependent in D+T mixture with calculating total energy deposited of deuteron beam in hot spot

S. N. Hoseinimotlagh¹, M. Jahedi²

¹Sciences College, Physics Department, Pardis Islamic Azad University of Shiraz, Pardis, Iran
²Department of Physics, Science and Research Branch, Islamic Azad University, Fars, Iran

ABSTRACT

The fast ignition (FI) mechanism, in which a pellet containing the thermonuclear fuel is first compressed by a nanosecond laser pulse, and then irradiated by an intense "ignition" beam, initiated by a high power picosecond laser pulse, is one of the promising approaches to the realization of the inertial confinement fusion (ICF). If the ignition beam is composed of deuterons, an additional energy is delivered to the target, coming from fusion reactions of the beam-target type, directly initiated by particles from the ignition beam. In this work, we choose the D+T fuel and at first step we compute the average reactivity in terms of temperature for first time at second step we use the obtained results of step one and calculate the total deposited energy of deuteron beam inside the target fuel at available physical condition then in third step we introduced the dynamical balance equation of D+T mixture and solve these nonlinear differential coupled equations versus time. In forth step we compute the power density and energy gain under physical optimum conditions and at final step we concluded that maximum energy deposited in the target from D+T and D+D reaction are equal to 19269.39061 keV and 39198.58043 keV respectively.

Key words: Deuteron beam, fast ignition, gain, dynamics

INTRODUCTION

In 1975 A. W. Maschke suggested the use of relativistic heavy ion beams to ignite an inertially confined mass of thermonuclear fuel [1]. As in conventional inertial confinement fusion, the fuel was assumed to be precompressed by a factor of the order of 100 in order to minimize the energy needed for ignition. Maschke suggested that lasers might compress the fuel, by high velocity impact, or by ion beams other than the ignition beam. Maschke’s “fast ignition” scheme was finally abandoned in favor of the more conventional approach to inertial fusion where the implosion supplies the energy for both compression and ignition. In 1994 an important paper by Tabak et al. [2] rekindled interest in fast ignition, this time using short-pulse lasers to provide the ignition temperature. Later, at the 1997 HIF Symposium, Tabak estimated requirements for heavy-ion-driven fast ignition [3]. This approach is now the subject of intense investigation in a number of countries. If
Ion beams could be made to deliver the energy density needed for ignition, they would have a number of distinct advantages. The reliability, durability, high repetition rate, and high driver efficiency are expected to be advantages of any accelerator driven inertial fusion system. In the case of fast ignition, there are some additional advantages. Moreover, for ions of the appropriate range, the beam energy can be deposited directly in the fuel, eliminating the inefficiency of converting laser light to electrons or ions that then deposit their energy in the fuel. Finally, because of the reduced requirements on illumination symmetry and stability, it may be possible to devise simple illumination schemes using direct drive or tightly coupled indirect drive, or use of single sided ion illumination for indirect drive fuel compression. This could simplify chamber design and, since direct drive and or tightly coupled indirect drive are efficient implosion methods, it could lead to lower driver energy and, as in the laser case, higher energy gain. We consider ion beam requirements for fast ignition in general, where a single short pulse of ions comes in from one direction onto one side of a pre-compressed D+T fuel mass, heating a portion of that fuel mass to conditions of ignition and propagating burn in a pulse shorter than the time for the heated region to expand significantly. The igniter beam (or beams) would be arranged to penetrate the target in such a way that the Bragg peak occurs at the usual target hot spot. Or one might increase the expansion time by tamping the ignition region. In fact Magelssen published a paper in 1984 [4] in which he presented calculations of a target driven by ion beams having two very different energies. The lower energy ions arrived first and imploded the target to a spherical configuration with a rather dense pusher or tamper surrounding the fuel. The higher energy beams were then focused onto the entire assembly, heating both the fuel and the pusher. The combination of the exploding pusher and the direct ion energy deposition heated the fuel to ignition.

In summary, the fast ignition (FI) mechanism, in which a pellet containing the thermonuclear fuel is first compressed by a nanosecond laser pulse, and then irradiated by an intense "ignition" beam, initiated by a high power picosecond laser pulse, is one of the promising approaches to the realization of the inertial confinement fusion (ICF). The ignition beam could consist of laser-accelerated electrons, protons, heavier ions, or could consist of the laser beam itself. It had been predicted that the FI mechanism would require much smaller overall laser energies to achieve ignition than the more conventional central hot spot approach, and that it could deliver a much higher fusion gain, due to peculiarities of the pressure and density distributions during the ignition. It is clear, however, that interactions of electrons and ions with plasma, and most importantly the energy deposition mechanisms are essentially different. Moreover, if the ignition beam is composed of deuterons, an additional energy is delivered to the target, coming from fusion reactions of the beam-target type, directly initiated by particles from the ignition beam [5]. These and other effects had been of course taken into account in later works on this topic [6,7]. In this work, we choose the D+T fuel and at first step we compute the average reactivity in terms of temperature for first time at second step we use the obtained results of step one and calculate the total deposited energy of deuteron beam inside the target fuel at available physical condition then in third of step we introduced the dynamical balance equation of D+T mixture and solve these nonlinear differential coupled equations by programming maple-15 versus time. In forth step we compute the power density and energy gain under physical optimum conditions and at final step we analyzed our obtained results.
NEW CALCULATION OF AVERAGE REACTIVITY FOR D+T AND D+D REACTIONS

In order for two nuclei to fuse they must be brought close to each other such that the strong nuclear force dominates the repulsive Coulomb force. Since this Coulomb force preventing two nuclei from getting closer is an increasing function of the atomic number Z, the most promising fusion reactions are those involving Hydrogen and its isotopes, namely Deuterium and Tritium. The most widely investigated reactions are the so-called D+D reaction and D+T reaction listed below.

The D+D reaction:
\[\text{D} + \text{D} \rightarrow \text{He} (0.82\text{MeV}) + n (2.45\text{MeV}) \]
%50

The D+T reaction:
\[\text{D} + \text{T} \rightarrow \text{He} (3.5\text{MeV}) + n (14.1\text{MeV}) \]
%50

The rate of thermonuclear reaction is a function of the reaction cross section, temperature, and density. For a mixture of two species with densities \(n_i \) and \(n_j \), the reaction rate is given by the expression [6],
\[
R_{ij} = \frac{n_i n_j}{1 + \delta_{ij} < \sigma v >}
\]
where \(\sigma \) is the reaction cross section and \(\delta_{ij} \) is the Kronecker symbol. If the fusion is “Thermonuclear”, i.e. if the energy provided to the reacting particles is the result of heating the system to a temperature \(T \), then we need to use the averaged \(< \sigma v > \).

Assuming a Maxwellian distribution, equation (4) becomes,
\[
R_{ij} = \frac{n_i n_j}{1 + \delta_{ij}} \left[\frac{8}{\pi \mu} \right]^{3/2} \left[\frac{1}{kT} \right]^{3/2} \int_0^\infty \sigma(E)E \exp \left(-\frac{E}{kT} \right) dE
\]
where \(\mu \) is the reduced mass of the system.

By comparing equation (4) and (5) we have
\[
< \sigma v > = \left[\frac{8}{\pi \mu} \right]^{3/2} \left[\frac{1}{kT} \right]^{3/2} \int_0^\infty \sigma(E)E \exp \left(-\frac{E}{kT} \right) dE
\]

Since the D+T reaction has the highest reaction rate at relatively low fuel temperature, it is the easiest fuel to assemble and burn. However, the presence of neutrons as a product (see D+T reaction) makes it unattractive for fusion reactors. The formula of fusion cross section for all these fusion reactions is given by [8]:
\[
\sigma(E_{lab}) = -16389C_3 \left(1 + \frac{m_a}{m_b} \right)^2 \times \left[m_a E_{lab} \left\{ \exp \left(31.40 Z_1 Z_2 \frac{m_a}{E_{lab}} \right) - 1 \right\} (C_1 + C_2 E_{lab})^2 + \left(C_3 - \frac{2\pi}{\left\{ \exp(31.40 Z_1 Z_2 \frac{m_a}{E_{lab}}) - 1 \right\}^2 \right) \right]^{-1}
\]

with 3 adjustable parameters (\(C_1 \), \(C_2 \) and \(C_3 \)) only. In (7), \(m_a \) and \(m_b \) are the mass number for the incident and target nucleus, respectively (e.g. \(m_a = 2 \) for incident deuteron); \(E_{lab} \) (deuteron energy in lab system) is in units of keV and \(\sigma \) is in units of barn. The numerical values of \(C_1 \), \(C_2 \) and \(C_3 \) for these reactions are listed in Table 1.
Table 1. Numerical values of C_1, C_2 and C_3 for reactions D+T and D+D[8].

<table>
<thead>
<tr>
<th></th>
<th>D+T</th>
<th>D+D (p+T and n+3He)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_1</td>
<td>-0.5405</td>
<td>-60.2641</td>
</tr>
<tr>
<td>C_2</td>
<td>0.005546</td>
<td>0.05066</td>
</tr>
<tr>
<td>C_3</td>
<td>-0.3909</td>
<td>-54.9932</td>
</tr>
</tbody>
</table>

From this formula, we calculated and plotted the variations of fusion cross sections for these reactions in terms of E_{lab} and our results are shown in Figure 1. Also by comparing our calculated numerical values with available experimental results as are shown in [8], we concluded that this formula is very exact.

Figure 1: Variations of fusion cross sections versus deuteron energy in lab system for different fusion reactions of D+T and D+D.

By using data in Table 1 and inserting equation (7) into equation (6) and integrate it for these reactions we can obtain the numerical values of averaged reactivity parameter in terms of temperature and plotted it for D+T and D+D in the Figure 2. Note that $E_{lab} = \frac{m_a + m_b}{m_p} E$, where E is energy in the center of mass frame. By observing Figs. 1 and 2 we concluded that the cross section and averaged reactivity of D+T fusion reaction is greater than D+D, and $<\sigma v>_{D+T}$ and $<\sigma v>_{D+D}$ are strongly temperature dependent. From Fig. 2, it will therefore be recognized that resonant temperature in which the probability for occurring fusion is maximized for both D+T and D+D fusion reactions are approximately 60 and 300 keV, respectively.

Figure 2: Variations of averaged reactivity in terms of temperature for $<\sigma v>_{D+T}$, $<\sigma v>_{D+D}$.
GAIN REQUIREMENT

In order for fusion to be economically an attractive energy source it is necessary that the energy from thermonuclear reaction exceeds both the energy invested in achieving it and the losses due to radiation, reactor wall, conversion inefficiencies, etc. A simple estimate of the driver efficiency and target gain can be obtained using energy bookkeeping approach (Fig.3).

Figure 3: Power cycle. P_{in}, the input power (this could be the electrical power from the outlet). P_d, the power at the output of the driver. P_g, the power from thermonuclear fusion. P_{th}, the power after converting the thermal energy to electrical energy.

Let P_{in} be the electrical power that we intend to invest in achieving fusion and let η_d be the efficiency of conversion of this power to laser light power P_d. If we define the target gain as the ratio of the power obtained from the fusion reaction to the driver power, then

$$P_g = G P_d = G \eta_d P_{in}$$

(8)

taking into account the conversion efficiency from thermal to electrical power, the available electrical power is given by,

$$P_{th} = \eta_{th} P_g = G \eta_{th} \eta_d P_{in}$$

(9)

A fraction $f G \eta_{th} \eta_d P_{in}$ of this power is used to run the driver and the remaining fraction $(1 - f) G \eta_{th} \eta_d P_{in}$ is send to the customers. The closer the factor $(1 - f)$ to unity, the more electricity is available to customers. This can be achieved by using small values of f, however, f has a lower bound determined by the equation,

$$P_{in} = f_{min} G \eta_{th} \eta_d P_{in} \rightarrow f_{min} = \frac{1}{G \eta_{th} \eta_d}$$

(10)

Using a typical η_{th} value of 40% and recycling less than 1/4 of the power to run the driver, we get, $G \eta_d \geq 10$. Solid state lasers for example have an efficiency of 1-10% [9] and to fulfill the available condition, gains of 100-1000 are needed.

DEUTERON BEAM AND DEPOSITED ENERGY IN PRE-COMPRESSED D+T FUEL

As we mentioned that in section 1, deuterons have been considered for fast ignition as well [9-17]. By chenkov et al., considered an accelerated deuteron beam, but decided that deuterons would have too high an energy (7-8 MeV) to form the desired hot spot [11]. Deuterons would not only provide proven ballistic focusing, but also fuse with the target fuel (both D and T) as they slow down[18], providing a “bonus” energy gain. Depending on the target plasma conditions, this added fusion gain can be a significant contribution [19]. We must notice that the idea of bonus energy for first time is presented by Xiaoling.
Yang and et.al in low temperatures [20], In this work we use of this idea, to compute the added energy released as the energetic deuterons interact with the target fuel ions in different range of temperatures (0-70keV) that is contained resonant temperature. This added energy increases total energy gain of the system. We use a modified energy multiplication factor φ to estimate the bonus energy in terms of the added “hot spot” heating by beam-target fusion reaction for D+T [18]. The deuteron beam deposited energy and stopping range and time are also calculated for this reaction. Also we determine time dependent of energy gain in different temperatures.

The F value is the ratio between the fusion energy E_f produced and the ion energy input E_i to the plasma and for D+T fuel is given by [18]:

$$F_{D+T} = \frac{n_T}{E_i} \int_{E_{th}}^{E_i} S(E) dE$$ \hspace{1cm} (11)

where E_i and E_{th} are, respectively, the average initial energy and the asymptotic thermalized energy of the injected single ion for each reaction [18,21,22] and

$$S(E) \equiv \sum_k K_k [\langle \sigma v(E) \rangle_{ik} (E_f)_{ik} / (dE/dt)]$$ \hspace{1cm} (12)

Such that for this reaction we have:

$$1/n_T \frac{dE}{dt} = - \frac{Z_k e^4 m_e^{1/2}}{3 \pi (2 \pi)^{1/2} E_0 m_i (kT_e)^{3/2}} \times \left[1 + \frac{3 \sqrt{\pi} m_i^{3/2} (kT_e)^{3/2}}{4 m_e^{1/2} E_0^{3/2}} \right]$$ \hspace{1cm} (13)

where m_e is the mass of electron and m_i is the mass of the injected ion, both of which are in atomic mass unit (amu). $\langle \sigma V \rangle_{ik}$ is the fusion reactivity for the injected ion I of species k having atomic fraction K_k in the target, $(E_f)_{ik}$ is the corresponding energy released per fusion, and T_e is the target electron temperature [22]. By combining equations (11), (12) and (13) we can estimate F_{D+T}.

$\ln \Lambda_{D+T}$ is the Coulomb logarithm for D+T fusion reaction that is given by [20]:

$$\ln \Lambda_{D+T} \approx 6.5 - \ln \left(Z_k \sqrt{\rho / T_e^{3/2}} \right)$$ \hspace{1cm} (14)

Where Z_k is the atomic number of target fuel ions and T_e here is in kilo-electron-volt, ρ is in g/cm^3. We plotted the two and three dimensional variations of $\ln \Lambda_{D+T}$ in terms of target density and temperature (see Figure 4).

Figure 4: a) The two and b) three dimensional variations of $\ln \Lambda_{D+T}$ in terms of target density and temperature.

From this figure we see that by increasing temperature and reducing target density $\ln \Lambda_{D+T}$ is increased. The $(E_f)_{ik}$ in Eq. (12) gives the energy released in the fusion reaction carried by both fast neutrons and charged particles. However, for hot spot heating, the ρR of the hot spot is too low to significantly slow down the neutrons, so only charged particles contribute. Thus, for D+T reaction in the target (see reaction (3)) only the 20% of the fusion
energy carried by the alphas is useful for heating while for the D+D reaction about 63% of the total is useful (see reactions (1) and (2)) [20]. Therefore, to prevent confusion, we introduce a new factor \(\varphi \) to represent the energy multiplication for the hot spot heating by the charged particles, and then \(\varphi_{D+T} = 20\% \) \(F_{D+T} \) for D+T fusion and for occurring D+D fusion in D+T mixture \(\varphi_{D+D} = 63\% \) \(F_{D+D} \).

In summary, the total energy that could be deposited into the target due to combined deuteron ion heating and beam-target fusion for D+T and D+D, respectively becomes:

\[
\begin{align*}
\varepsilon_{D+T} &= E_i(1 + \varphi_{D+T}) \\
\varepsilon_{D+D} &= E_i(1 + \varphi_{D+D})
\end{align*}
\]

so it is seen that the parameters \(\varphi_{D+T}, \varphi_{D+D} \) play the role in the “bonus energy” for deuteron driven fast ignition in two reactions. To avoid confusion, please note that the \(\varepsilon \) here is the total energy deposited by the ion beam plus any contribution from its beam-target fusion in the hot spot, but not the total input energy to the target that is often cited in energy studies and represents the total laser compression plus fast ignition energy delivered to the total target, also the deuteron stopping range and stopping time can be calculated by following equations [20]:

\[
\begin{align*}
R_S &= \int_{E_{th}}^{E_i} v_D dE\bigg/\left(\frac{dE}{dt}\right) \\
t_S &= \int_{E_{th}}^{E_i} dE\bigg/\left(\frac{dE}{dt}\right)
\end{align*}
\]

Where, \(\frac{dE}{dt} \) is calculated from equation (13) for D+T, the deuteron velocity is \(v_D = \sqrt{2E/m_D} \).

For calculating the total energy deposited into the target of D+T at first step we substitute equation (14) into equation (13), then at second step the obtained result is substituted into equation (12) and at third step the result of second step are inserted into equation (11) and we compute \(F_{D+T} \) and \(F_{D+D} \) for D+T reaction at forth step we use of these parameters for determination of \(\varphi_{D+T} \) and \(\varphi_{D+D} \). At final step the obtained results from forth step inserted into equations (15) and (16) thus we can obtain the numerical values of \(\varepsilon_{D+T} \) and \(\varepsilon_{D+D} \) in D+T mixture for \(300 \leq \rho(g/cm^3) \leq 500.0 \leq T_e(keV) \leq 70 \) and deuteron energy \(E \), with range of \(0 \leq E(MeV) \leq 10 \). Also under these conditions we can calculate the deuteron stopping range and stopping time by using equations (17) and (18). Figure 5 shows the results of our calculations of \(\varphi_{D+T}, \varphi_{D+D}, \varepsilon_{D+T} \) and \(\varepsilon_{D+D} \) in the case of \(\rho = 500(g/cm^3) \) and in Table 2 computed numerical values of maximum of \(\varphi_{D+T}, \varphi_{D+D}, \varepsilon_{D+T} \) and \(\varepsilon_{D+D} \) are given for studying D+T reaction at different temperatures and target density \(300 \leq \rho(g/cm^3) \leq 500 \).

We see clearly that from Fig. 5, the changes of \(\varphi_{D+T}, \varphi_{D+D}, \varepsilon_{D+T} \) and \(\varepsilon_{D+D} \) by increasing temperature is such that we have the maximum value of them in resonance temperature of 60 keV. We must be notice that the temperature 60 keV is a resonant temperature for D+T reaction such that in this temperature we have maximum probability for occurring fusion reaction. Also from Table 2 we find that the maximum total deposited energy of \(\varepsilon_{D+T} \) and \(\varepsilon_{D+D} \) inside hot spot and also the maximum of \(\varphi_{D+T} \) and \(\varphi_{D+D} \) by increasing target density from 300 to 500(g/cm^3) are raised very slowly. The total energy deposited inside hot spot (\(\varepsilon_{D+T} \) and \(\varepsilon_{D+D} \)) is also function of deuteron energy beam \((E_i) \) such that by increasing energy from 1 to 10000keV increased. Fig. 5 show that the values of multiplication factors \(\varphi_{D+T}, \varphi_{D+D} \) increased by increasing deuteron energy (please note that our calculations show that in temperature lower than 5keV at first by raising the...
deuteron energy φ_{D+T} and φ_{D+D} are increased and then slowly decreased). In all temperatures ε_{D+D} is higher than ε_{D+T}. From Fig. 6 we see that by increasing temperature stopping time ($t_{S_{D+T}}$) is increased because by raising temperature particle energy is increased then the stopping time become large. Since that by increasing temperature stopping range is increased then particle can move more distance (see Fig. 7). The effective parameter that decreased stopping time and stopping range, is n_T. Our calculations show that by changing n_T from 10^{22} to 10^{24} cm$^{-3}$, $t_{S_{D+T}}$ and $R_{S_{D+T}}$ are decreased by the order of 10 and 100. By increasing target density from 300 to 500 (g/cm3) $R_{S_{D+T}}$ and $t_{S_{D+T}}$ are increased, but this changes for $t_{S_{D+T}}$ is not very sensitive.

Figure 5: The two dimensional variation of a) φ_{D+T} b) φ_{D+D} c) ε_{D+T} d) ε_{D+D} in terms of deuteron energy in different temperature in D+T mixture for

$$\rho = 500 \left(\frac{g}{cm^3} \right)$$
Figure 6: The three dimensional variations of stopping time versus target density and deuteron energy in different temperatures in D+T mixture a) $n_T = 10^{22} \text{ (cm}^{-3}\text{)}$, b) $n_T = 10^{23} \text{ (cm}^{-3}\text{)}$, c) $n_T = 10^{24} \text{ (cm}^{-3}\text{)}$.

Figure 7: The three dimensional variations of stopping range versus target density and deuteron energy in different temperatures in D+T mixture a) $n_T = 10^{22} \text{ (cm}^{-3}\text{)}$, b) $n_T = 10^{23} \text{ (cm}^{-3}\text{)}$, c) $n_T = 10^{24} \text{ (cm}^{-3}\text{)}$.
Table 2: Maximum numerical values of total energy deposited and multiplication factors in D+T mixture at different temperature for $300 \leq \rho (g/cm^3) \leq 500$.

<table>
<thead>
<tr>
<th>$\rho (g/cm^3)$</th>
<th>$T_e (keV)$</th>
<th>$\varepsilon_{D+T_{\text{max}}} (keV)$</th>
<th>$\varepsilon_{D+D_{\text{max}}} (keV)$</th>
<th>$\Phi_{D+T_{\text{max}}}$</th>
<th>$\Phi_{D+D_{\text{max}}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>10</td>
<td>11463.92692</td>
<td>14611.36978</td>
<td>0.146392691</td>
<td>0.461136978</td>
</tr>
<tr>
<td>300</td>
<td>20</td>
<td>15185.35591</td>
<td>26333.87112</td>
<td>0.518535591</td>
<td>1.63387112</td>
</tr>
<tr>
<td>300</td>
<td>60</td>
<td>19020.60063</td>
<td>38414.89199</td>
<td>0.90206063</td>
<td>2.841489199</td>
</tr>
<tr>
<td>300</td>
<td>70</td>
<td>18763.52452</td>
<td>37605.10224</td>
<td>0.876352452</td>
<td>2.76051024</td>
</tr>
<tr>
<td>400</td>
<td>10</td>
<td>11494.18969</td>
<td>14706.69751</td>
<td>0.14941897</td>
<td>0.470669751</td>
</tr>
<tr>
<td>400</td>
<td>20</td>
<td>15278.61416</td>
<td>26267.63459</td>
<td>0.527861416</td>
<td>1.662763459</td>
</tr>
<tr>
<td>400</td>
<td>60</td>
<td>19159.04394</td>
<td>38850.98842</td>
<td>0.915904394</td>
<td>2.885098842</td>
</tr>
<tr>
<td>400</td>
<td>70</td>
<td>18891.14962</td>
<td>38007.12129</td>
<td>0.889114962</td>
<td>2.80071212</td>
</tr>
<tr>
<td>500</td>
<td>10</td>
<td>11518.539</td>
<td>14783.39786</td>
<td>0.151853900</td>
<td>0.478339786</td>
</tr>
<tr>
<td>500</td>
<td>20</td>
<td>15353.29364</td>
<td>26862.87495</td>
<td>0.535329363</td>
<td>1.686287495</td>
</tr>
<tr>
<td>500</td>
<td>60</td>
<td>19269.39061</td>
<td>39198.58043</td>
<td>0.926939061</td>
<td>2.91858043</td>
</tr>
<tr>
<td>500</td>
<td>70</td>
<td>18992.73249</td>
<td>38327.10736</td>
<td>0.899273249</td>
<td>2.832710736</td>
</tr>
</tbody>
</table>

Balance Equations of Deuterium-Tritium Mixture

The following system of equations is used to describe the temporal evolution of plasma parameters averaged over the volume (the density of deuterium ions n_D, density of tritium ions n_T, density of thermal alpha-particles n_α, plasma energy E, for D+T nuclear fusion reaction:

$$\frac{dn_D}{dt} = -\frac{n_D}{\tau_p} - n_D n_T (\sigma v)_{D+T} + S_D$$

(19)

$$\frac{dn_T}{dt} = -\frac{n_T}{\tau_p} - n_D n_T (\sigma v)_{D+T} + S_T$$

(20)

$$\frac{dn_\alpha}{dt} = -\frac{n_\alpha}{\tau_\alpha} + n_D n_T (\sigma v)_{D+T}$$

(21)

The energy balance equation is given by

$$\frac{dE}{dt} = -\frac{E}{\tau_E} + Q_\alpha n_D n_T (\sigma v)_{D+T} - P_{rad}$$

(22)

S_D and S_T are the source terms which give us the fuel rates; τ_α, τ_p, and τ_E are the lifetimes of thermal alpha-particles, deuterium and tritium, and the energy confinement time, respectively, also the energy of the alpha particles are: $Q_\alpha = 3.52 MeV$. The radiation loss P_{rad} is given by:

$$P_{rad} = P_{brem} = A_b Z_{eff} n_e^2 \sqrt{T_e} f \text{ for } D + T$$

(23)

Where $A_b = 4.85 \times 10^{-37} \frac{W m^3}{K eV}$ is bremsstrahlung radiation coefficient. No explicit evolution equation is provided for the electron density n_e since we can obtain it from the neutrality condition $n_e = n_D + n_T + 2n_\alpha$, whereas the effective atomic number, the total density and the energy are written as

$$Z_{eff} \sum_i n_i Z_i^2 = \frac{n_D + n_T + 4n_\alpha}{n_e}$$

(24)
where, Z_i is the atomic number of the different ions. The fusion energy gain is defined as:
$$G(t) = \frac{E_f(t)}{E_{driver}}$$
where $E_f(t)$ is equal to the energy due to the number of occurred fusion reactions in target in terms of time and E_{driver} is the required energy for triggering fusion reactions in hot spot and is equal to 4MJ[23]. Also the fusion power density for D+T reaction is given by
$$P_{D+T} = n_D(t) n_T < \sigma v > _{D+T} Q_{D+T}$$
where $Q_{D+T} = 17.6 MeV$.

We solve time dependent nonlinear coupled differential equations (19) to (22) with the use of computers (programming, Maple-15) under available physical conditions. Our computational obtained results are given, in Figs.8 to 10 and Table.3.

From Figs.8 to 10 we see clearly that, by increasing temperature from 1 keV to 70 keV the variations of deuterium and tritium density in terms of time $(n_D(t), n_T(t))$ are decreased since that by increasing time the consumption rate of $n_D(t)$ and $n_T(t)$ are increased but the changes of $n_D(t)$ and $n_T(t)$ in all temperature are similar and as we see in Figs.8 to 10 they coincide each other. Thus, by increasing temperature 1 keV to 70 keV the variations of alpha density $(n_\alpha(t))$ versus time at first by increasing time is increased and then decreased while the production rate of fusion plasma energy $(E_f(t))$ is increased until in resonant temperature 60 keV is maximized because in this temperature the highest number of D+T fusion reaction is occurred. Also, our calculations show that by increasing the injection rate of deuterium and tritium $(S_D$ and S_T) from 10^{22} to $10^{24} cm^{-3}$ the rate of variations of $n_D(t)$ and $n_T(t)$ in terms of time are increased while $n_\alpha(t)$ and $E_f(t)$ are increased. Therefore for having optimum value of power density and fusion energy gain by using the above discussions we choose the injection rate of deuterium and tritium and resonant temperature respectively equal to $10^{24} cm^{-3}$ and $T_e = 60$ keV (see Table.3).

![Figure 8: The two dimensional variations of deuterium, tritium and alpha particles densities and plasma energy in terms of time in different temperatures for D+T mixture under choosing $S_T = 0.20 \times 10^{22}(cm^{-3})$ and $S_D = 0.63 \times 10^{22}(cm^{-3})$.](image)
Figure 9: The two dimensional variations of deuterium, tritium and alpha particles densities and plasma energy in terms of time in different temperatures for D+T mixture under choosing $S_T = 0.20 \times 10^{23} (cm^{-3})$ and $S_D = 0.63 \times 10^{23} (cm^{-3})$.

Figure 10: The two dimensional variations of deuterium, tritium and alpha particles densities and plasma energy in terms of time in different temperatures for D+T mixture under choosing $S_T = 0.20 \times 10^{24} (cm^{-3})$ and $S_D = 0.63 \times 10^{24} (cm^{-3})$.
Table 3: Time dependent numerical values of fusion power density and target energy gain.

<table>
<thead>
<tr>
<th>T_e (keV)</th>
<th>t (s)</th>
<th>$P_{D+T}(t) \left(\frac{W}{cm^3}\right)$</th>
<th>$G_{D+T}(t)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>10^{-20}</td>
<td>1549.2E17</td>
<td>0.11802E-22</td>
</tr>
<tr>
<td>20</td>
<td>10^{-11}</td>
<td>702.75E13</td>
<td>1.1798E-15</td>
</tr>
<tr>
<td>20</td>
<td>60</td>
<td>619.61E-6</td>
<td>0.572432E-7</td>
</tr>
<tr>
<td>20</td>
<td>110</td>
<td>619.61E-6</td>
<td>0.99075E1</td>
</tr>
<tr>
<td>40</td>
<td>10^{-20}</td>
<td>2827.6E17</td>
<td>0.21788E-22</td>
</tr>
<tr>
<td>40</td>
<td>10^{-11}</td>
<td>1282.1E13</td>
<td>2.1777E-15</td>
</tr>
<tr>
<td>40</td>
<td>60</td>
<td>1131.4E-6</td>
<td>1.0566E-6</td>
</tr>
<tr>
<td>40</td>
<td>110</td>
<td>1131.4E-6</td>
<td>1.8288E1</td>
</tr>
<tr>
<td>60</td>
<td>10^{-20}</td>
<td>3092.4E17</td>
<td>0.23718E-22</td>
</tr>
<tr>
<td>60</td>
<td>10^{-11}</td>
<td>1401.9E13</td>
<td>2.3705E-15</td>
</tr>
<tr>
<td>60</td>
<td>60</td>
<td>1236.9E-6</td>
<td>1.1501E-6</td>
</tr>
<tr>
<td>60</td>
<td>110</td>
<td>1236.9E-6</td>
<td>1.9906E1</td>
</tr>
<tr>
<td>70</td>
<td>10^{-20}</td>
<td>3073.8E17</td>
<td>0.23485E-22</td>
</tr>
<tr>
<td>70</td>
<td>10^{-11}</td>
<td>1393.5E13</td>
<td>2.3473E-15</td>
</tr>
<tr>
<td>70</td>
<td>60</td>
<td>1229.5E-6</td>
<td>1.1389E-6</td>
</tr>
<tr>
<td>70</td>
<td>110</td>
<td>1229.5E-6</td>
<td>1.9711E1</td>
</tr>
</tbody>
</table>

Conclusion

From this paper, we conclude that the resonant temperature for D+T mixture is 60 keV and in this temperature we have maximum energy gain. Our computational results show that the numerical values of stopping time ($t_{s(D+T)}$) are increased very strongly by raising temperature, while slowly increase by raising target density ρ. Another effective parameter on the value of stopping time is the deuteron energy such that by increasing this energy stopping time are increased. But by raising n_T in D+T reaction numerical values of stopping time strongly decreased. The important parameter that effect on the value of stopping range, is target density, by increasing target density $R_{s(D+T)}$ is strongly increased. The multiplication factors and total deposited energies are time independent because in calculating these parameters n_T is omitted. By observing the related figures and tables we concluded that the maximum variations of particle densities, plasma energy, power density and target energy gain are occurred in resonant temperature. From table.3 we have maximum gain equal to 19.906 at resonant temperature 60 keV under optimum conditions $S_D = 0.63 \times 10^{24}(cm^{-3})$, $S_T = 0.20 \times 10^{24}(cm^{-3})$, $t=110$s. Finally, we concluded that the maximum energy deposited in the target from D+T and D+D reaction are equal to 19269.39061keV and 39198.58043keV respectively. So, the deposited energy can reduce laser driver energy.

References

APJEE !!!
“Speedy publication service, Online archives, Paperless, web-based peer review system, Open access policy, Indexing in world known citation databases, Global circulation, Broad international readership and authorship, Online submission system, Minimum publication charge”
Asian Business Consortium (ABC) is a multi-disciplinary research, training, publishing, digital library supporting and service house. Though founded in 2010 as the Business and Computing organization of Asia, it was reconstituted as the ABC in 2011. It has been working for creating and nurturing talents in USA, Malaysia and Bangladesh since its inception. As ABC is going global, it intends to open chapters in Australia, Germany, Japan, Pakistan, and other Asian countries in near future. The objectives of consortium are solely centered round the welfare and humane attitude of the founders who enthusiastically took up this noble cause and materialized it with a view to promote research and educational activities for the encouragement of scholars to develop their knowledge, to publish their analysis oriented scientific researches in international Journals, books, the task of organizing workshops, seminars, conferences, training, personality development programs and allied services.

In addition to research activities, ABC provides a good number of scholarships to the poor and meritorious students at various levels of education throughout the world. It plays an important role in the field of research by funding research projects and publishing the research papers. This consortium will unquestionably become the mouth-piece of the dark horses and unacknowledged scholar whose endowed and commendable contributions shall be provided an outlet keeping in mind the greater good of the larger society of the world.

ABC runs the following international referred journals for creating a platform to share the thoughts of professionals, scholars and academicians throughout the world.

ABC Publications (ABC Journals)

- Asian Accounting and Auditing Advancement (4A Journal); **ICV 5.09**
- Asian Business Review (ABR); **UIF 0.1809**
- Asian Journal of Applied Sciences and Engineering (AJASE); **UIF 0.6351**
- Global Disclosure of Economics and Business (GDEB)
- ABC Journal of Advanced Research (ABC-JAR)
- International Journal of Reciprocal Symmetry and Theoretical Physics (IJRSTP)
- American Journal of Trade and Policy (AJTP)
- Asian Journal of Humanity, Art and Literature (AJHAL)
- ABC Journal of Medical and Biological Research (ABC-JMBR)
- Asia Pacific Journal of Energy and Environment (APJEE)
- Engineering International (EI)
- ABC Research Alert (Online)

Each journal home page provides specific information for potential authors and subscribers. Open access policy, the quick review process, rich editorial boards and quality publications have already made ABC Journals unique. **ABC Journals** are published under the direct supervisions of renowned academicians of the world.

Collaboration in Conference: ABC considers high-quality conference papers for publication. Please contact us for detailed information.

Collaboration in Publishing: If you like to start writing a book, propose a new journal or advertise in ABC journals, please feel free to contact us.